New ring construction strategy in taxane synthesis: stereocontrolled synthesis of taxane CB-ring system

Chang-Qing Wei, Gang Zhao, Xiang-Rong Jiang and Yu Ding*
Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China. Fax: 8621 64166128; E-mail: Dingyu@pub.sioc.ac.cn

Received (in Cambridge, UK) 2nd June 1999, Accepted 29th September 1999

A concise stereocontrolled construction of taxane CB-ring system $(\mathrm{C} \rightarrow \mathrm{CB})$ is described. The key bottom and top linking of the eight-membered B-ring were realized unprecedentedly by way of successive intermolecular aldol condensation and intramolecular aldol cyclization.

Taxol has attracted considerable interest from synthetic organic chemists since it was isolated ${ }^{1}$ from the Pacific yew tree owing to its unique structural features, as well as its remarkable anticancer activity and limited supply. ${ }^{2}$ To date, six research groups in the world have accomplished the total synthesis of taxol. ${ }^{3}$ In spite of these successes, many excellent works on the syntheses of taxol and its analogues are still in progress. ${ }^{4}$ Many factors which influence its bioactivity remain to be investigated and it is desirable that simpler analogues with better therapeutic profiles will be synthesized and become useful pharmaceutical products. However, convenient access to the fully functionalized A-ring, C-ring and the construction of the sterically congested eight-membered B-ring remains a challenge in taxol synthesis.

Herein we would like to report a new synthetic strategy which could lead to assembly of all the 20 carbons and essential oxygen functionalities of the taxane diterpene core. The central feature of our strategy involves the synthesis of the appropriately functionalized CB-ring subunit I with the most necessary substituents from the C-ring intermediate II.

Our key C-ring intermediate was synthesized by successful use of a known intramolecular Diels-Alder reaction, as shown in Scheme 1. The pentadienyl ester 3 was prepared by treatment of penta-2,4-dienol $\mathbf{1}^{5}$ with the trans-3-methoxycarbonylbut-2-enoyl chloride 2 which was prepared from citraconic anhydride. ${ }^{6}$ After heating at reflux in xylene for $32 \mathrm{~h}, \mathbf{3}$ underwent the intramolecular Diels-Alder reaction exclusively via the exo-mode to give a single crystalline product which was assigned as the trans-fused adduct 4 from NMR data. ${ }^{7}$ Both facile epimerization and basic hydrolysis to cis lactone 5 could be induced simultaneously with 2 M NaOH (aq.) at reflux for

Scheme 1 Reagents and conditions: a. pyridine, benzene, r.t., 90%; b. 2,6-di-tert-butyl-p-cresol, xylene, reflux, $32 \mathrm{~h}, 65 \%$; c. 2 M NaOH (aq.), reflux, 3 h , crude 100%; d. 0.5 M NaHCO 3 (aq.), $\mathrm{KI}, \mathrm{I}_{2}, \mathrm{H}_{2} \mathrm{O}$, r.t., overnight, 85%; e. $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , r.t., overnight, crude 100%; f. 40% HBr , dioxane, r.t., overnight, 98%; g. TBSCl, imidazole DMF, 92%; h. $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, benzene, reflux, $3 \mathrm{~h}, 94 \%$.

3 h in quantitative yield. The crude carboxylic acid 5, when treated with potassium iodide-iodine in sodium bicarbonate solution, was transformed into the iodolactone $\mathbf{6}$ in 85% overall yield. The iodolactone 6 was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to open the lactone ring with concomitant formation of the corresponding epoxide 7 in quantitative yield, which on cleavage with $\mathrm{HBr}(40 \%)$ in dioxane at room temp. led to the bromohydrin 8 exclusively in 98% yield. Its structure was confirmed by X-ray crystallographic analysis. ${ }^{8}$ Subsequent hydroxy group protection and reductive debromination of $\mathbf{8}$ gave $\mathbf{1 0}$ in 86% overall yield. Attempts to introduce the hydroxy group into compound $\mathbf{8}$ from the carboxylic ester of $\mathbf{5}$ by direct hydroboration gave poor regio- and stereo-selectivity.
The intermediate 10, which already has the exact relative stereochemistry, was used for further group transformations (Scheme 2). Reduction of the dicarbonyl compound 10 with

\underbrace{c}

14

15
Scheme 2 Reagents and conditions: a. DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 82%; b. BzCl, py, $0{ }^{\circ} \mathrm{C}, 98 \%$; c. propane-1,3-dithol, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$; d. TPSCl, imidazole, DMF, r.t., $10 \mathrm{~h}, 95 \%$; e. HgCl_{2}, HgO , acetone, $\mathrm{H}_{2} \mathrm{O}, 55^{\circ} \mathrm{C}, 2 \mathrm{~h}, 97 \%$.

DIBAL furnished diol 11 as a single isomer in 82% yield. After a four-step sequence: i) benzoylation of the diol $11(\mathrm{BzCl}$, pyridine, 98%); ii) opening of the furan ring in $\mathbf{1 2}$ (propane-1,3-dithiol, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 80 \%$); iii) protection of the generated hydroxy group in $\mathbf{1 3}$ as its tert-butyldiphenylsilyl ether (TPSCl , imidazole, DMF, 95%); iv) deprotection of 14 to uncover the aldehyde group $\left(\mathrm{HgCl}_{2}, \mathrm{HgO}\right.$, acetone $\left.-\mathrm{H}_{2} \mathrm{O}, 97 \%\right)$, compound $\mathbf{1 5}$ was achieved in 72% overall yield. This compound has the relative stereochemistry and main functionality needed for the construction of the taxane skeleton.

In order to produce a five carbon atom chain containing a quaternary carbon in a single step we chose known 3,3-dimethylpent-4-enoate $\mathbf{1 7}$ and its derivative $\mathbf{1 6}$ as building blocks. Compound $\mathbf{1 7}$ has been used successfully by us in the synthesis of the Taxol A-ring. ${ }^{9}$ In our initial trials, the intermolecular Mukaiyama reaction ${ }^{10}$ between silyl enol ether $\mathbf{1 6}$ and aldehyde $\mathbf{1 8}^{\mathbf{1 1}}$ did not proceed at all and the reactants were recovered almost quantitatively. Then the traditional aldol condensation induced by $\mathrm{LDA}-\mathrm{ZnCl}_{2}$ system was tried. To our delight, the aldol reaction between the unsaturated ester 17 and 18 took place smoothly in the presence of ZnCl_{2} to furnish the desired β-hydroxyester 19 in 88% yield with good stereoselectivity (Scheme 3). ${ }^{12}$

Protection of aldol 19 was achieved with TESOTf and 2,6lutidine to give its triethyl silyl ether 20 in 95% yield. DIBAL reduction of compound 20 gave diol 21 in 82% yield, and successive protection of the thus formed hydroxy groups with isopropylidene acetal provided compound in 98% yield (Scheme 4). Attempts to directly reduce the β-hydroxy ester 19 to diol 21 using LAH or DIBAL were both unsatisfactory.

The eight-membered B-ring could be formed from compound 22 by intramolecular aldol cyclization if the terminal double bond could be transformed to an acetyl group and the terminal benzyloxymethyl group could be transformed to a formyl group. However, all attempts to convert the terminal double bond in compound 22 into the desired methyl ketone unit by Wacker oxidation ${ }^{13}$ and its modified conditions ${ }^{14}$ were ineffective but the reactants were recovered almost quantitatively. Therefore, we had to switch to an alternative four-step sequence as shown in Scheme 5. Epoxidation of compound 22 with MCBPA gave epoxide 23 in 92% yield. Opening this epoxide ring with LAH furnished alcohol 24 in quantitative

Scheme 3 Reagents and conditions: a. $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-50^{\circ} \mathrm{C}, 2 \mathrm{~h}$; b. TMSOTf $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; c. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 2 \mathrm{~h}$; d. LDA, THF, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{ZnCl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathbf{1 8},-78^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$.

Scheme 4 Reagents and conditions: a. TESOTf, 2,6-lutidine, $0^{\circ} \mathrm{C}, 10 \mathrm{~h}$, 95%; b. DIBAL $\mathrm{Ch}_{2} \mathrm{Cl}_{2}$, r.t., $12 \mathrm{~h}, 82 \%$; c. $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, cat. CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $12 \mathrm{~h}, 98 \%$.

Scheme 5 Reagents and conditions: a. MCBPA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 24 h , 92%; b. LAH, THF, $0^{\circ} \mathrm{C}-$ r.t., $1 \mathrm{~h}, 98 \%$; c. 10% Pd-C, EtOAc, r.t., 24 h, 86%; d. TPAP-NMO, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., $2 \mathrm{~h}, 98 \%$.
yield. Further deprotection of the benzyl group gave the diol 25 in 86% yield. Subsequent oxidation of diol 25 with the TPAP and NMO combined system took place rapidly to afford the desired ring closure precursor ketoaldehyde 26 in 98% yield.

Encouraged by the titanium(iv) chloride induced Mukaiyama type aldol protocol, which was used by Posner, ${ }^{15}$ Cockerill ${ }^{16}$ and A. B. Smith ${ }^{17}$ in the syntheses of medium to large size ring systems, we tried this approach in the synthesis of the key eight-membered B-ring. Without protection of the aldehyde group adjacent to a tertiary carbon, ketoaldehyde 26 was directly converted to its enol trimethylsilyl ether which then underwent intramolecular Mukaiyama cyclization. Unfortunately, all attempts to form the desired eight-membered ring system by a wide variety of different catalysts failed, only complicated mixtures were obtained. Success was finally attained with a more direct aldol approach. Upon treatment with ${ }^{\text {t }} \mathrm{BuOK}$ in THF at room temperature for 12 h , ketoaldehyde 26 underwent smooth cyclization to furnish the 8 -membered ring product $\mathbf{2 7}$ corresponding to the CB-ring system of taxane in 90% isolated yield ${ }^{18}$ (Scheme 6).

Thus, a stereocontrolled synthesis of the taxane CB-ring was unprecedently achieved via successive intermolecular aldol condensation and intramolecular aldol cyclization. Our CBring subunit with most functionalities and exact relative configuration offers the possibility for further A-ring and oxetane D-ring installation and should prove to be a versatile synthetic intermediate for the taxane diterpenoid skeleton. Synthetic studies on the ABC-ring system of taxane from the present CBring system are under active investigation in our laboratories.

Experimental

All ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AMX-300 or 600 spectrometers and reported in δ units, parts per million (ppm). Mass spectra (EI) were recorded on a HP-5985-A mass spectrometer and HRMS, FABMS and ESIMS were recorded on a Finnigan MAT-95 mass spectrometer.

Infrared (IR) spectra were recorded on Shimadzu IR-440 or Digital FTIR and reported in wave numbers (cm^{-1}). Element analyses were performed on Carlo-ERBA 1106. Flash column chromatography was performed on silica gel $\mathrm{H}(10-40 \mu \mathrm{~m})$. THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium-benzophenone ketyl. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2}. DMF was distilled before use. Other reagents were obtained commercially and used as received unless otherwise specified. All water sensitive reactions were performed under a static nitrogen or argon atmosphere in flame-dried glassware.

Carboxylic acid 5

A solution of $\mathbf{4}(0.12 \mathrm{~g}, 0.57 \mathrm{mmol})$ in 2 M aq. $\mathrm{NaOH}(3 \mathrm{ml})$ was stirred at reflux for 3 h . Then the mixture was acidified with $10 \% \mathrm{H}_{2} \mathrm{SO}_{4}$. The aqueous layer was extracted with ether (20 $\mathrm{ml} \times 3$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent gave the crude carboxylic acid $5(0.109 \mathrm{~g}, 99 \%)$ as a white solid. The analytical sample was recrystallized from hexane-ethyl acetate. Mp 162-163 ${ }^{\circ} \mathrm{C}$; IR (film) 3450-2800, 1740, 1200, 1100, 980 , 790, 680; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$), $1.68(3 \mathrm{H}, \mathrm{s}), 2.18(1 \mathrm{H}$, $\mathrm{m}), 2.64(1 \mathrm{H}, \mathrm{m}), 3.14(1 \mathrm{H}, \mathrm{dd}, J=1.1,7.1 \mathrm{~Hz}), 3.32(1 \mathrm{H}, \mathrm{m})$, $4.08(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 4.36(1 \mathrm{H}, \mathrm{dd}, J=6.0,9.0 \mathrm{~Hz}), 5.60$
$(1 \mathrm{H}, \mathrm{dd}, J=2.6,10.1 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{m}) ; \operatorname{EIMS}(\mathrm{m} / z) 197$ $\left(\mathrm{M}^{+}+1\right), 150,106,91 ;$ E.A. Calcd. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}: \mathrm{C}, 61.22 ; \mathrm{H}$, 6.16. Found: C, 61.20; H, 6.08\%.

Iodolactone 6

To a solution of $5(0.05 \mathrm{~g}, 0.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ were added 0.5 M aq. $\mathrm{NaHCO}_{3}(1 \mathrm{ml}), 20 \%$ aq. $\mathrm{KI}(1 \mathrm{ml})$ and $\mathrm{I}_{2}(0.08$ g). Then the mixture was stirred overnight at room temperature. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHSO_{3}, saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent and purification by flash column chromatography (petroleum ether : ethyl acetate $=5: 1$) gave the title compound $\mathbf{6}(0.071 \mathrm{~g}, 85 \%)$ as a white solid. Mp $189-190^{\circ} \mathrm{C}$; IR (film) 2960, 1780, 1760, 1450, 1190, 1120, 1075, $1060,960,940 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.58(3 \mathrm{H}$, s), $2.26(1 \mathrm{H}, \mathrm{m}), 2.72(1 \mathrm{H}, \mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}), 2.90(1 \mathrm{H}, \mathrm{m})$, $2.98(1 \mathrm{H}, \mathrm{d}, J=13.2 \mathrm{~Hz}), 4.44(2 \mathrm{H}, \mathrm{m}), 4.66(1 \mathrm{H}, \mathrm{m}), 4.97(1 \mathrm{H}$, dd, $J=4.0,6.1 \mathrm{~Hz}) ; \operatorname{EIMS}(m / z) 323\left(\mathrm{M}^{+}+1\right), 195,167,107$, 91; E.A. Calcd.for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{4} \mathrm{I}:$ C, 37.29 ; H, 3.44. Found: C, 37.09; H, 3.22\%.

Epoxide 7

To a solution of $6(0.06 \mathrm{~g}, 0.186 \mathrm{mmol})$ in methanol (5 ml) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($0.035 \mathrm{~g}, 0.25 \mathrm{mmol}$). Then the mixture was stirred overnight at room temperature. The solvent was removed and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added. The aqueous layer was extracted with ethyl acetate ($10 \mathrm{ml} \times 3$), the combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: :thyl acetate $=5: 1)$ gave the title compound $7(0.041 \mathrm{~g}$, 99%) as a colorless oil. IR (neat) $2960,1760,1720,1460,1280$, 1200, 1140, 1050, 970, $940,800 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.54(3 \mathrm{H}, \mathrm{s}), 1.96(1 \mathrm{H}, \mathrm{dd}, J=1.0,15.5 \mathrm{~Hz}), 2.72(1 \mathrm{H}$, $\mathrm{dt}, J=1.9,15.4 \mathrm{~Hz}), 3.02(2 \mathrm{H}, \mathrm{m}), 3.22(1 \mathrm{H}, \mathrm{m}), 3.28(1 \mathrm{H}, \mathrm{m})$, $3.72(3 \mathrm{H}, \mathrm{s}), 4.26(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=6.4,9.6$ $\mathrm{Hz}) ; \operatorname{EIMS}(\mathrm{m} / \mathrm{z}) 227\left(\mathrm{M}^{+}+1\right), 194,167,141,105,95,91 ;$ HREIMS Calcd. for $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{O}_{5}: 226.0841$. Found: 226.0794.

Bromohydrin 8

To a solution of $7(0.06 \mathrm{~g}, 0.26 \mathrm{mmol})$ in acetonitrile (4 ml) was added 40% aq. $\mathrm{HBr}(0.2 \mathrm{ml})$ at $-40^{\circ} \mathrm{C}$. The mixture was stirred for 2 h . Then the mixture was allowed to warm to room temperature and stirred overnight. $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{ml})$ was added to dilute the reaction mixture. The aqueous layers were extracted with ethyl acetate ($10 \mathrm{ml} \times 3$), the combined organic layer was washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: : thyl acetate $=5: 1$) gave the title compound $\mathbf{8}(0.079 \mathrm{~g}, 98 \%)$ as a crystalline solid. Mp $127-128^{\circ} \mathrm{C}$; IR (film) 3503, 2953, 2889, 1759, 1728, 1460, 1371, 1199, 1120, 1068, 1029, 975, 965, 833, $706 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.59(3 \mathrm{H}, \mathrm{s}), 1.95(1 \mathrm{H}, \mathrm{dd}, J=13.0,13.8$ $\mathrm{Hz}), 2.52(1 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}$, ddd, $J=13.8,3.8,2.2 \mathrm{~Hz}), 3.02$ $(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.25(1 \mathrm{H}, \mathrm{dd}, J=6.6,2.0 \mathrm{~Hz}), 3.46(1 \mathrm{H}, \mathrm{dd}, J=10.4$, $10.2 \mathrm{~Hz}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.79(1 \mathrm{H}, \mathrm{m}), 4.19(1 \mathrm{H}, \mathrm{dd}, J=9.3,4.3$ $\mathrm{Hz}), 4.36(1 \mathrm{H}, \mathrm{d}, J=9.3 \mathrm{~Hz}) ; \operatorname{EIMS}(m / z) 309\left(\mathrm{M}^{+}+2\right), 307$ $\left(\mathrm{M}^{+}\right), 227,195,167,149,123,95$; E.A. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{5} \mathrm{Br}$: C, 43.02; H, 4.92. Found: C, 43.27 ; H, 4.62\%.

TBS-protected bromohydrin 9

To a solution of $\mathbf{8}(0.061 \mathrm{~g}, 0.2 \mathrm{mmol})$ in DMF (1 ml) were added imidazole ($0.04 \mathrm{~g}, 0.6 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride (TBSCl) ($0.045 \mathrm{~g}, 0.3 \mathrm{mmol})$. The mixture was stirred overnight at room temperature. $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ was added to dilute the reaction mixture. The aqueous layer was extracted with ether ($10 \mathrm{ml} \times 3$), the combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum
ether: ethyl acetate $=20: 1)$ gave the title compound $9(0.081 \mathrm{~g}$, 92%) as a colorless oil. IR (neat) 2958, 1778, 1725, 1463, 1255, 1117, 861, 834, 777, $736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $0.12(3 \mathrm{H}, \mathrm{s}), 0.21(3 \mathrm{H}, \mathrm{s}), 0.87(9 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.95(1 \mathrm{H}$, dd, $J=12.9,12.9 \mathrm{~Hz}), 2.51(1 \mathrm{H}, \mathrm{m}), 2.69(1 \mathrm{H}, \mathrm{ddd}, J=14.0$, $3.8,2.5 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{dd}, J=6.7,2.0 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J=$ $9.6,9.6 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{m}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.16(1 \mathrm{H}, \mathrm{dd}, J=9.4,4.4$ $\mathrm{Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}) ; \operatorname{EIMS}(m / z) 423\left(\mathrm{M}^{+}+2\right), 421$ $\left(\mathrm{M}^{+}\right), 365,319,305,259,237,179,149,105$; E.A. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{5} \mathrm{SiBr}$: C, $48.45 ; \mathrm{H}, 6.94$. Found: C, $48.45 ; \mathrm{H}, 7.12 \%$.

Debrominated TBS ether 10

To a solution of $9(0.042 \mathrm{~g}, 0.1 \mathrm{mmol})$ in benzene $(4 \mathrm{ml})$ were added AIBN ($8 \mathrm{mg}, 0.05 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{SnH}(0.04 \mathrm{ml}, 0.15$ mmol). The mixture was stirred for 3 h at reflux under N_{2}. Removal of the solvent and purification by flash column chromatography (petroleum ether: ethyl acetate $=20: 1$) gave the title compound $10(0.032 \mathrm{~g}, 94 \%)$ as a colorless oil. IR (neat) 2932, 2859, 1781, 1723, 1463, 1363, 1271, 1177, 1087, 856, 837, $773 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.03(3 \mathrm{H}, \mathrm{s}), 0.04(3 \mathrm{H}$, s), $0.84(9 \mathrm{H}, \mathrm{s}), 1.20(1 \mathrm{H}, \mathrm{ddd}, J=13.8,11.3,2.7 \mathrm{~Hz}), 1.40(1 \mathrm{H}$, ddd, $J=13.8,13.8,2.7 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{s}), 1.78(1 \mathrm{H}$, ddd, $J=12.8,7.1,3.8 \mathrm{~Hz}), 2.12(1 \mathrm{H}, \mathrm{ddd}, J=13.8,6.2,2.7 \mathrm{~Hz}), 2.37$ $(1 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{dd}, J=6.3,2.2 \mathrm{~Hz}), 3.39(1 \mathrm{H}, \mathrm{ddd}, J=10.8$, $10.5,4.5 \mathrm{~Hz}), 3.72(3 \mathrm{H}, \mathrm{s}), 4.11(1 \mathrm{H}, \mathrm{dd}, J=9.1,4.1 \mathrm{~Hz}), 4.17$ $(1 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}) ; \operatorname{EIMS}(\mathrm{m} / \mathrm{z}) 341\left(\mathrm{M}^{+}-1\right), 281,216,207$, 187, 173, 165, 154, 121; E.A. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Si}: \mathrm{C}, 59.62$; H, 8.83. Found: C, 59.34; H, 8.97\%.

DIBAL reduction of $\mathbf{1 0}$ to semiacetal 11

To a solution of $\mathbf{1 0}(0.068 \mathrm{~g}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added 1.0 M DIBAL ($0.72 \mathrm{ml}, 0.72 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 2 h and methanol was added to quench the reaction. Then the mixture was allowed to warm to room temperature and 10 ml 1 M HCl was added. The aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layer was washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether : ethyl acetate $=$ 2:1) gave the title compound $11(0.052 \mathrm{~g}, 82 \%)$ as a single isomer. Mp 142-143 ${ }^{\circ} \mathrm{C}$; IR (film) 3402, 2956, 2858, 1473, 1361, 1256, 1087, 1042, 852, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta-0.09(3 \mathrm{H}, \mathrm{s}),-0.07(3 \mathrm{H}, \mathrm{s}), 0.72(9 \mathrm{H}, \mathrm{s}), 1.28(1 \mathrm{H}$, $\mathrm{m}), 1.29(3 \mathrm{H}, \mathrm{s}), 1.58(2 \mathrm{H}, \mathrm{m}), 1.79(1 \mathrm{H}, \mathrm{dd}, J=14.0,1.8 \mathrm{~Hz})$, $2.09(1 \mathrm{H}, \mathrm{dd}, J=9.6,7.7 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{dd}, J=6.3,6.1 \mathrm{~Hz})$, $3.58,3.72(2 \mathrm{H}, \mathrm{AB}, J=10.4 \mathrm{~Hz}), 3.62(1 \mathrm{H}, \mathrm{m}), 3.98(1 \mathrm{H}, \mathrm{s})$, $3.99(1 \mathrm{H}, \mathrm{s}), 5.68(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$; FABMS: $315\left(\mathrm{M}^{+}-1\right)$, $317\left(\mathrm{M}^{+}+1\right), 339\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; E.A. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C}$, $60.72 ;$ H, 10.19. Found: C, $60.67 ;$ H, 10.29\%.

Dibenzoate of semiacetal 12

To a solution of $\mathbf{1 1}(0.063 \mathrm{~g}, 0.2 \mathrm{mmol})$ in pyridine (1 ml) was added benzoyl chloride $(0.07 \mathrm{ml}, 0.6 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 30 minutes and methanol was added to quench the reaction. Then the mixture was allowed to warm to room temperature and 10 ml 1 M HCl was added. The aqueous layer was extracted with ethyl acetate $(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether : ethyl acetate $=10: 1)$ gave the title compound $12(0.103 \mathrm{~g}$, 98%) as a colorless oil. IR (neat) $3064,1722,1602,1452,1386$, $776,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.08$ $(3 \mathrm{H}, \mathrm{s}), 0.88(9 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{s}), 1.40-1.65(3 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}$, $\mathrm{m}), 2.29(1 \mathrm{H}, \mathrm{m}), 2.60(1 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}, \mathrm{ddd}, J=9.9,9.9,4.1$ $\mathrm{Hz}), 4.01(2 \mathrm{H}, \mathrm{m}), 4.29(2 \mathrm{H}, \mathrm{s}), 6.38(1 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}), 7.40-$ $7.60(6 \mathrm{H}, \mathrm{m}), 8.05(4 \mathrm{H}, \mathrm{m}) ; \operatorname{EIMS}(\mathrm{m} / \mathrm{z}) 523\left(\mathrm{M}^{+}-1\right), 467$ $\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$; E.A. Calcd. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{Si}$: C, 68.67; H, 7.68 . Found: C, 68.46; H, 7.82\%.

Dithioacetal 13

A solution of $\mathbf{1 2}(0.052 \mathrm{~g}, 0.1 \mathrm{mmol})$ and propane-1,3-dithiol $(0.03 \mathrm{ml}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{TiCl}_{4}(0.017 \mathrm{ml}, 0.15 \mathrm{mmol})$ was added dropwise. The mixture was warmed to $-40^{\circ} \mathrm{C}$ and stirred for 2 h . Saturated aqueous NaHCO_{3} was added and the mixture was warmed to room temperature. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{ml} \times 3$), the combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether:ethyl acetate $=5: 1$) gave the title compound $13(0.041 \mathrm{~g}, 80 \%)$ as a white solid. Mp $138-140^{\circ} \mathrm{C}$; IR (film) $3290,1720,1472,1378,775,711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07(3 \mathrm{H}, \mathrm{s}), 0.11(3 \mathrm{H}, \mathrm{s}), 0.89(9 \mathrm{H}, \mathrm{s}), 1.23(3 \mathrm{H}$, s), $1.51(2 \mathrm{H}, \mathrm{m}), 1.65-2.00(4 \mathrm{H}, \mathrm{m}), 2.06(1 \mathrm{H}, \mathrm{m}), 2.19(1 \mathrm{H}, \mathrm{m})$, $2.62(1 \mathrm{H}, \mathrm{m}), 2.75-3.00(3 \mathrm{H}, \mathrm{m}), 3.75(1 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{m})$, $4.18(1 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}, \mathrm{m}), 4.46(1 \mathrm{H}, \mathrm{d}, J=3.5 \mathrm{~Hz}), 7.40-7.60$ $(3 \mathrm{H}, \mathrm{m}), 8.05(2 \mathrm{H}, \mathrm{m}) ; \operatorname{EIMS}(\mathrm{m} / \mathrm{z}) 509\left(\mathrm{M}^{+}-1\right), 453$ ($\mathrm{M}^{+}-{ }^{\mathrm{t}}$ Bu); E.A. Calcd. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}$: C, 61.13; H, 8.29; S, 12.55. Found: C, $61.38 ; \mathrm{H}, 8.48 ; \mathrm{S}, 12.12 \%$.

TBDPS ether of dithioacetal 14

To a solution of $\mathbf{1 3}(0.051 \mathrm{~g}, 0.1 \mathrm{mmol})$ in DMF $(1.5 \mathrm{ml})$ were added imidazole ($0.016 \mathrm{~g}, 0.24 \mathrm{mmol}$) and TBDPSCl (0.033 g , 0.12 mmol). The mixture was allowed to stand overnight at $50^{\circ} \mathrm{C}$. Water (5 ml) was added to quench the reaction and the aqueous layer was extracted with ether ($10 \mathrm{ml} \times 3$), the combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: ethyl acetate $=20: 1$) gave the title compound $\mathbf{1 4}(0.071 \mathrm{~g}, 95 \%)$ as a colorless oil. IR (neat) 1722, 1472, 774, 740, $709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.80(9 \mathrm{H}, \mathrm{s}), 1.02(9 \mathrm{H}, \mathrm{s}), 1.10-1.50(3 \mathrm{H}, \mathrm{m})$, $1.50-1.85(3 \mathrm{H}, \mathrm{m}), 2.01(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.65-2.90(4 \mathrm{H}$, m), 3.45-4.65 (6H, m), 7.25-7.80 (13H, m), $8.07(2 \mathrm{H}, \mathrm{d}, J=8.3$ $\mathrm{Hz})$; $\operatorname{EIMS}(m / z) 749\left(\mathrm{M}^{+}+1\right), 691\left(\mathrm{M}^{+}-{ }^{\text {t}} \mathrm{Bu}\right)$; E.A. Calcd. for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}_{2}$: C, $67.33 ; \mathrm{H}, 8.07$; S, 8.56. Found: C, 67.43 ; H, 8.33; S, 8.69\%.

Deprotection of dithioacetal to 14 aldehyde 15

To a solution of $\mathbf{1 4}(0.075 \mathrm{~g}, 0.1 \mathrm{mmol})$ in acetone $(0.6 \mathrm{ml})$ and water $(0.06 \mathrm{ml})$ were added $\mathrm{HgO}(0.043 \mathrm{~g}, 0.2 \mathrm{mmol})$ and HgCl_{2} $(0.054 \mathrm{~g}, 0.2 \mathrm{mmol})$. After stirring for 2 h at $55^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite and the solid was washed with acetone. The solvent was removed and the residue was dissolved with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $10 \% \mathrm{KI}$ and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether:ethyl acetate $=$ 20:1) gave the title compound $\mathbf{1 5}(0.064 \mathrm{~g}, 97 \%)$ as a colorless oil. IR (neat) $3072,1723,1472,1429,776,740,709 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.17(3 \mathrm{H}, \mathrm{s}),-0.04(3 \mathrm{H}, \mathrm{s}), 0.71$ $(9 \mathrm{H}, \mathrm{s}), 0.99(9 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.40-1.80(5 \mathrm{H}, \mathrm{m}), 2.20(1 \mathrm{H}$, m), $3.37(1 \mathrm{H}, \mathrm{m}), 3.48(1 \mathrm{H}, \mathrm{dd}, J=9.1,9.1 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{m})$, 4.20, $4.42(2 \mathrm{H}, \mathrm{AB}, J=11.2 \mathrm{~Hz}), 7.25-7.80(13 \mathrm{H}, \mathrm{m}), 8.07(2 \mathrm{H}$, $\mathrm{d}, J=9.3 \mathrm{~Hz}), 9.98(1 \mathrm{H}, \mathrm{s}) ; \operatorname{EIMS}(m / z) 658\left(\mathrm{M}^{+}\right), 601$ $\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$; HREIMS Calcd. for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{Si}_{2}\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$: 601.2805. Found: 601.2787.

Intermolecular aldol condensation to unsaturated ester 19

Butyllithium ($0.075 \mathrm{ml}, 0.12 \mathrm{mmol}$) was added to a solution of i- $\mathrm{Pr}_{2} \mathrm{NH}(0.017 \mathrm{ml}, 0.12 \mathrm{mmol})$ in THF $(2 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$, then the mixture was allowed to warm to room temperature and stirred for 20 minutes. The mixture was then cooled to $-78^{\circ} \mathrm{C}, \mathbf{1 7}$ $(0.017 \mathrm{~g}, 0.11 \mathrm{mmol})$ was added and stirred for $1 \mathrm{~h}, \mathrm{ZnCl}_{2}(16.5$ $\mathrm{mg}, 0.12 \mathrm{mmol}$) in THF (1 ml) was added and stirred for 1 h , then $18(0.064 \mathrm{~g}, 0.1 \mathrm{mmol})$ was added and stirred for another 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the mixture was warmed to room temperature. The aqueous layer was extracted
with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether:ethyl acetate $=$ 20:1) gave the title compound $19(0.072 \mathrm{~g}, 88 \%)$ as a $9: 1$ mixture of two diastereomers. Spectra data of major isomer: IR (neat) $3497,3072,1709,1639,1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.02(3 \mathrm{H}, \mathrm{s}), 0.06(3 \mathrm{H}, \mathrm{s}), 0.60(3 \mathrm{H}, \mathrm{s}), 0.85(9 \mathrm{H}, \mathrm{s})$, $1.00(3 \mathrm{H}, \mathrm{s}), 1.03(12 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}), 1.25-1.40$ $(3 \mathrm{H}, \mathrm{m}), 1.98(1 \mathrm{H}, \mathrm{m}), 2.12(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=10.4,5.5$ $\mathrm{Hz}), 2.49(1 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 3.50(3 \mathrm{H}, \mathrm{m}), 3.68$ $(1 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 3.85(1 \mathrm{H}, \mathrm{m}), 4.14(2 \mathrm{H}, \mathrm{m}), 4.38,4.44(2 \mathrm{H}$, $\mathrm{AB}, J=12.3 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}$, $J=17.5 \mathrm{~Hz}), 5.75$ ($1 \mathrm{H}, \mathrm{dd}, J=17.3,10.7 \mathrm{~Hz}$), $7.20-7.45(11 \mathrm{H}$, m), $7.65(4 \mathrm{H}, \mathrm{m})$; $\operatorname{EIMS}(m / z) 802\left(\mathrm{M}^{+}+1\right), 726\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}-\right.$ $\mathrm{H}_{2} \mathrm{O}$); E.A. Calcd. for $\mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, 71.95 ; H, 9.06. Found: C, 72.36; H, 9.35. Selective spectra data of minor isomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $0.18(6 \mathrm{H}, \mathrm{s}), 0.82(9 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}$, s), $1.01(3 \mathrm{H}, \mathrm{s}), 1.08(9 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{t}, J=7.2$ $\mathrm{Hz}), 1.38(1 \mathrm{H}, \mathrm{m}), 1.56(1 \mathrm{H}, \mathrm{m}), 1.86(2 \mathrm{H}, \mathrm{m}), 2.30(2 \mathrm{H}, \mathrm{m})$, $2.62(1 \mathrm{H}, \mathrm{m}), 3.12(1 \mathrm{H}, \mathrm{m}), 3.20(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 3.62(1 \mathrm{H}$, m), $3.98,4.02(2 \mathrm{H}, \mathrm{AB}, J=7.2 \mathrm{~Hz}), 4.22(1 \mathrm{H}, \mathrm{m}), 4.30(1 \mathrm{H}, \mathrm{m})$, $4.48(3 \mathrm{H}, \mathrm{m}), 4.82(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}), 4.93(1 \mathrm{H}, \mathrm{d}, J=17.6$ $\mathrm{Hz}), 5.85(1 \mathrm{H}, \mathrm{m}), 7.30(11 \mathrm{H}, \mathrm{m}), 7.68(4 \mathrm{H}, \mathrm{m})$.

TES ether protected unsaturated ester 20

To a solution of $19(0.08 \mathrm{~g}, 0.1 \mathrm{mmol})$ and 2,6-lutidine $(0.023$ $\mathrm{ml}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added TESOTf $(0.034 \mathrm{ml}$, 0.15 mmol) at $0^{\circ} \mathrm{C}$. Then the mixture was allowed to stand overnight at room temperature. Saturated aqueous NaHCO_{3} was added to quench the reaction and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: ethyl acetate $=50: 1$) gave the title compound $20(0.089 \mathrm{~g}, 95 \%)$ as a colorless oil. IR (neat) $3072,1737,1638$, $1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(6 \mathrm{H}, \mathrm{s}), 0.39$ $(6 \mathrm{H}, \mathrm{m}), 0.70(9 \mathrm{H}, \mathrm{t}, J=7.7 \mathrm{~Hz}), 0.75(3 \mathrm{H}, \mathrm{s}), 0.85(3 \mathrm{H}, \mathrm{s}), 0.88$ $(9 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}, \mathrm{s}), 1.15(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}), 1.17$ $(2 \mathrm{H}, \mathrm{m}), 1.40(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 2.35(1 \mathrm{H}, \mathrm{m}), 2.48(1 \mathrm{H}, \mathrm{d}$, $J=5.5 \mathrm{~Hz}), 2.93(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz})$, $3.75(3 \mathrm{H}, \mathrm{m}), 3.80(1 \mathrm{H}, \mathrm{m}), 4.15(1 \mathrm{H}, \mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.45$, $4.65(2 \mathrm{H}, \mathrm{AB}, J=11.5 \mathrm{~Hz}), 4.88(1 \mathrm{H}, \mathrm{d}, J=17.6 \mathrm{~Hz}), 4.97(1 \mathrm{H}$, $\mathrm{d}, J=11.2 \mathrm{~Hz}), 6.00(1 \mathrm{H}, \mathrm{dd}, J=17.6,11.0 \mathrm{~Hz}), 7.20-7.45$ $(11 \mathrm{H}, \mathrm{m}), 7.68(4 \mathrm{H}, \mathrm{m}) ; \operatorname{ESIMS}(\mathrm{m} / \mathrm{z}) 938\left(\mathrm{M}^{+}+\mathrm{Na}\right), 961$ $\left(\mathrm{M}^{+}+2 \mathrm{Na}\right)$; E.A. Calcd. for $\mathrm{C}_{54} \mathrm{H}_{86} \mathrm{O}_{6} \mathrm{Si}_{3}$: C, 70.84; H, 9.47. Found: C, 70.94; H, 9.68\%.

Reduction of ester to unsaturated diol 21

To a solution of $\mathbf{2 0}(0.092 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added 1.0 M DIBAL $(0.36 \mathrm{ml}, 0.36 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature. Then the mixture was recooled to $0^{\circ} \mathrm{C}$ and methanol was added to quench the reaction and 10 ml 1 M HCl was added. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHCO_{3} and brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether:ethyl acetate $=$ 10:1) gave the title compound $21(0.063 \mathrm{~g}, 82 \%)$ as a white solid. Mp 133-134 ${ }^{\circ}$ C; IR (film) $3365,3070,2930,1634,1471$, $1427 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.02(3 \mathrm{H}, \mathrm{s}), 0.06$ $(3 \mathrm{H}, \mathrm{s}), 0.60(3 \mathrm{H}, \mathrm{s}), 0.90(9 \mathrm{H}, \mathrm{s}), 1.05(12 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s})$, $1.22(2 \mathrm{H}, \mathrm{m}), 1.34(2 \mathrm{H}, \mathrm{m}), 1.80(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{m}), 2.38$ $(1 \mathrm{H}, \mathrm{m}), 3.21(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.42(2 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}), 3.83-4.12(4 \mathrm{H}$, $\mathrm{m}), 4.42,4.46(2 \mathrm{H}, \mathrm{AB}, J=12.1 \mathrm{~Hz}), 4.76(1 \mathrm{H}, \mathrm{d}, J=10.7 \mathrm{~Hz})$, $4.88(1 \mathrm{H}, \mathrm{d}, 17.6 \mathrm{~Hz}), 5.78(1 \mathrm{H}, \mathrm{dd}, J=10.7,17.3 \mathrm{~Hz}), 7.22-$ $7.45(11 \mathrm{H}, \mathrm{m}), 7.60(4 \mathrm{H}, \mathrm{m}) ; \operatorname{ESIMS}(m / z) 759\left(\mathrm{M}^{+}\right), 782$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; E.A. Calcd. for $\mathrm{C}_{46} \mathrm{H}_{70} \mathrm{O}_{5} \mathrm{Si}_{2}$: C, 72.77; H, 9.29. Found: C, $72.60 ; \mathrm{H}, 9.26 \%$.

Isopropylidene protected unsaturated diol 22

To a solution of $21(0.076 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{ml})$ were added $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}(0.05 \mathrm{ml}, 0.4 \mathrm{mmol})$ and CSA $(3.75 \mathrm{mg}$, cat.). The mixture was allowed to stand overnight at room temperature. Saturated aqueous NaHCO_{3} was added to quench the reaction and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($10 \mathrm{ml} \times 3$), the combined organic layers were washed with brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether : ethyl acetate $=20: 1)$ gave the isopropylidene acetal $22(0.078 \mathrm{~g}, 98 \%)$ as a colorless oil. IR (neat) $3076,2932,1637,1472,1429 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12(6 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{s}), 0.96$ $(3 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{s}), 1.12(9 \mathrm{H}, \mathrm{s}), 1.30(6 \mathrm{H}, \mathrm{s})$, $1.35-1.65(3 \mathrm{H}, \mathrm{m}), 1.85(1 \mathrm{H}, \mathrm{m}), 2.05(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{m})$, $2.45(1 \mathrm{H}, \mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{br}$ s), $3.35-3.70(4 \mathrm{H}, \mathrm{m}), 3.85(2 \mathrm{H}$, $\mathrm{m}), 4.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.43,4.47(2 \mathrm{H}, \mathrm{AB}, J=11.9 \mathrm{~Hz}), 4.85$ $(1 \mathrm{H}, \mathrm{d}, J=11.6 \mathrm{~Hz}), 4.90(1 \mathrm{H}, \mathrm{d}, J=17.7 \mathrm{~Hz}), 5.63(1 \mathrm{H}, \mathrm{m})$, $7.30(11 \mathrm{H}, \mathrm{m}), 7.70(4 \mathrm{H}, \mathrm{m}) ; \operatorname{ESIMS}(\mathrm{m} / z) 822\left(\mathrm{M}^{+}+\mathrm{Na}\right)$; E.A. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{5} \mathrm{Si}_{2}$: C, 73.63; H, 9.33. Found: C, 72.91; H, 9.37\%.

Epoxidation of protected unsaturated diol to epoxide 23

To a solution of $22(0.08 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ was added MCBPA $(55 \%, 34.5 \mathrm{mg}, 0.11 \mathrm{mmol})$. The mixture was allowed to stand overnight at room temperature. $1 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to quench the reaction and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHCO_{3}, brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: ethyl acetate $=$ 15:1) gave the epoxide $23(0.075 \mathrm{~g}, 92 \%)$ as a single isomer. IR (neat) 3072, 2931, 1473, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.08(6 \mathrm{H}, \mathrm{s}), 0.70-0.95(21 \mathrm{H}, \mathrm{m}), 1.05(12 \mathrm{H}, \mathrm{m}), 1.20-$ $1.60(4 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{br}$ s), $2.32(1 \mathrm{H}, \mathrm{br}$ s), $2.40-2.60(3 \mathrm{H}, \mathrm{m})$, $2.62(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.95(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.45-3.90(5 \mathrm{H}, \mathrm{m}), 4.25(1 \mathrm{H}, \mathrm{br}$ s), $4.42(2 \mathrm{H}, \mathrm{m}), 7.30(11 \mathrm{H}, \mathrm{m}), 7.68(4 \mathrm{H}, \mathrm{m}) ; \operatorname{ESIMS}(\mathrm{m} / \mathrm{z}) 837$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right), 860\left(\mathrm{M}^{+}+2 \mathrm{Na}\right)$; E.A. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{6} \mathrm{Si}_{2}: \mathrm{C}$, 72.19; H, 9.15. Found: C, 71.82; H, 9.23\%.

Reduction of epoxide to alcohol 24

To the suspension of LAH ($4 \mathrm{mg}, 0.105 \mathrm{mmol}$) in THF (2 ml) was added $23(0.082 \mathrm{~g}, 0.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, then the suspension was allowed to warm to room temperature and stirred for 1 h . Aqueous NaOH was added to quench the reaction. The mixture was filtered through a pad of Celite and the solid was washed with ethyl acetate, the combined organic fractions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of solvent, the residue was purified by flash column chromatography (petroleum ether: ethyl acetate $=8: 1$) to give the title compound $24(0.08 \mathrm{~g}, 98 \%)$ as a white solid. Mp $97-99^{\circ} \mathrm{C}$; IR (film) 3449, 3072, 2931, 1473, $1429 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.60-0.95(18 \mathrm{H}, \mathrm{m}), 1.02(15 \mathrm{H}, \mathrm{br}$ s), 1.19 $(3 \mathrm{H}, \mathrm{br}$ s), $1.30(2 \mathrm{H}, \mathrm{m}), 1.40-1.60(2 \mathrm{H}, \mathrm{m}), 1.90(2 \mathrm{H}, \mathrm{m}), 2.21$ $(1 \mathrm{H}, \mathrm{br}$ s), $2.42(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{m}), 3.45(1 \mathrm{H}, \mathrm{m}), 3.60(2 \mathrm{H}$, $\mathrm{m}), 3.75(3 \mathrm{H}, \mathrm{m}), 4.05(1 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}, \mathrm{m}), 4.36(2 \mathrm{H}, \mathrm{m}), 7.30$ $(11 \mathrm{H}, \mathrm{m}), 7.60(4 \mathrm{H}, \mathrm{m})$; FABMS $(m / z) 818\left(\mathrm{M}^{+}+1\right)$; E.A. Calcd. for $\mathrm{C}_{49} \mathrm{H}_{76} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, $72.01 ; \mathrm{H}, 9.37$. Found: C, $72.28 ; \mathrm{H}$, 9.47%.

Deprotection of alcohol 24 to diol 25

To a solution of $\mathbf{2 4}(0.082 \mathrm{~g}, 0.1 \mathrm{mmol})$ in ethyl acetate (2 ml) was added $\mathrm{Pd}-\mathrm{C}(10 \%, 8 \mathrm{mg})$, then the suspension was stirred at room temperature for 24 h under an H_{2} atmosphere. The mixture was filtered through a pad of Celite and the solid was washed with ethyl acetate. After removal of solvent, the residue was purified by flash column chromatography (petroleum ether : ethyl acetate $=2: 1$) to give the title compound 25 (0.063 $\mathrm{g}, 86 \%$) as a white solid. Mp $121-122^{\circ} \mathrm{C}$; IR (film) 3412, 3302,

2932, 1473, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.06(6 \mathrm{H}$, s), $0.85(18 \mathrm{H}, \mathrm{m}), 1.08(12 \mathrm{H}, \mathrm{s}), 1.18(6 \mathrm{H}, \mathrm{m}), 1.20-1.40(2 \mathrm{H}$, $\mathrm{m}), 1.50-1.60(2 \mathrm{H}, \mathrm{m}), 2.02(2 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{d}), 3.32(1 \mathrm{H}, \mathrm{m})$, $3.45(1 \mathrm{H}, \mathrm{m}), 3.60-3.90(6 \mathrm{H}, \mathrm{m}), 4.22(1 \mathrm{H}, \mathrm{m}), 7.40(6 \mathrm{H}$, $\mathrm{m}), 7.65(4 \mathrm{H}, \mathrm{m})$; $\operatorname{EIMS}(m / z) 670\left(\mathrm{M}^{+}+1-{ }^{\mathrm{t}} \mathrm{Bu}\right), 652\left(\mathrm{M}^{+}+\right.$ $1-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{H}_{2} \mathrm{O}$); HREIMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{61} \mathrm{O}_{6} \mathrm{Si}_{2}\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$: 669.4007. Found: 669.3998.

Oxidation of diol 25 to ketoaldehyde 26

To a solution of $\mathbf{2 5}(0.073 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ were added $4 \AA$ molecular sieves (50 mg), NMO ($17.6 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ and TPAP (1.76 mg , cat.). The mixture was stirred for 2 h at room temperature, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a pad of Celite and the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of solvent, the residue was purified by flash column chromatography (petroleum ether: ethyl acetate $=5: 1$) to give the title compound $26(0.075 \mathrm{~g}, 98 \%)$ as a colorless oil. IR (neat) $3073,2933,1727,1704,1472,1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.02(6 \mathrm{H}, \mathrm{s}), 0.82(9 \mathrm{H}, \mathrm{s}), 1.05(12 \mathrm{H}, \mathrm{s})$, $1.20\left(4 \times \mathrm{CH}_{3}, 4 \times \mathrm{s}\right), 1.62(2 \mathrm{H}, \mathrm{m}), 1.95(2 \mathrm{H}, \mathrm{m}), 2.10(2 \mathrm{H}, \mathrm{m})$, $2.18(3 \mathrm{H}, \mathrm{s}), 2.61(1 \mathrm{H}, \mathrm{d}, J=3.8 \mathrm{~Hz}), 3.34(1 \mathrm{H}, \mathrm{dd}, J=1.7,12.4$ $\mathrm{Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J=5.2,12.4 \mathrm{~Hz}), 3.84(1 \mathrm{H}, \mathrm{dd}, J=6.0,10.7$ $\mathrm{Hz}), 3.95(2 \mathrm{H}, \mathrm{m}), 4.12(1 \mathrm{H}, \mathrm{m}), 7.40(6 \mathrm{H}, \mathrm{m}), 7.70(4 \mathrm{H}$, m), $9.52(1 \mathrm{H}, \mathrm{s}) ; \operatorname{EIMS}(\mathrm{m} / \mathrm{z}) 706\left(\mathrm{M}^{+}+1-\mathrm{CH}_{3}\right), 664$ $\left(\mathrm{M}^{+}-1-{ }^{\mathrm{t}} \mathrm{Bu}\right)$; HREIMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Si}_{2}\left(\mathrm{M}^{+}-{ }^{\mathrm{t}} \mathrm{Bu}\right)$: 665.3693. Found: 665.3670 .

Intramolecular aldol condensation of ketoaldehyde 26 to $\boldsymbol{\beta}$-hydroxy ketone $\mathbf{2 7}$

To a solution of ${ }^{\mathrm{t}} \mathrm{BuOK}(14 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF (10 ml) was added $26(0.072 \mathrm{~g}, 0.1 \mathrm{mmol})$ in THF (10 ml) over a 2 h period, then the mixture was stirred overnight at room temperature. $\mathrm{HCl}(1 \mathrm{M})$ was added to quench the reaction and the aqueous layer was extracted with ethyl acetate $(10 \mathrm{ml} \times 3)$, the combined organic layers were washed with saturated aqueous NaHCO_{3}, brine, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of solvent and purification by flash column chromatography (petroleum ether: ethyl acetate $=3: 1)$ gave the title compound $27(0.065 \mathrm{~g}, 90 \%)$ as a 6.6:1.0 mixture of two epimers. Spectra data of major isomer: IR (film) 3477, 3073, 2933, 1690, 1472, $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.19(3 \mathrm{H}, \mathrm{s}), 0.08(3 \mathrm{H}, \mathrm{s}), 0.64(3 \mathrm{H}, \mathrm{s}), 0.95$ $(9 \mathrm{H}, \mathrm{s}), 1.05(15 \mathrm{H}, \mathrm{m}), 1.30(6 \mathrm{H}, \mathrm{m}), 1.60(2 \mathrm{H}, \mathrm{br}$ s), $1.75-2.25$ $(4 \mathrm{H}, \mathrm{m}), 2.30-2.75(3 \mathrm{H}, \mathrm{m}), 3.02-4.70(7 \mathrm{H}, \mathrm{m}), 7.42(6 \mathrm{H}, \mathrm{m})$, $7.70(4 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.9,135.7$, $133.8,129.6,127.6,98.7,79.4,77.5,77.0,76.6,75.5,67.6,63.1$, $55.6,48.0,47.3,46.6,42.1,37.1,29.7,27.2,27.0,26.2,25.9$, 25.7, 24.3, 24.0, 20.5, 18.6, 18.4, -4.5, -4.9; $\operatorname{EIMS}(m / z) 722$ $\left(\mathrm{M}^{+}\right), 666\left(\mathrm{M}^{+}+1-{ }^{\mathrm{t}} \mathrm{Bu}\right), 648\left(\mathrm{M}^{+}+1-{ }^{\mathrm{t}} \mathrm{Bu}-\mathrm{H}_{2} \mathrm{O}\right), 607$ ($\mathrm{M}^{+}-724 ; 1-2^{\mathrm{t}} \mathrm{Bu}$); HREIMS Calcd. for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{O}_{6} \mathrm{Si}_{2}\left(\mathrm{M}^{+}-\right.$ $\left.{ }^{\mathrm{t}} \mathrm{Bu}\right):$ 665.3693. Found: 665.3685.

Oxidation of compound 27

To a solution of $27(0.072 \mathrm{~g}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ were added $4 \AA$ molecular sieves $(50 \mathrm{mg})$, NMO ($17.6 \mathrm{mg}, 0.15$ $\mathrm{mmol})$ and TPAP (1.76 mg , cat.). The mixture was stirred for 2 h at room temperature, then diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a pad of Celite and the solid was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After removal of solvent, the residue was purified by flash column chromatography (petroleum ether:ethyl acetate $=$ $10: 1)$ to give the 1,3 -dicarbonyl compound $(0.071 \mathrm{~g}, 98 \%)$ as a colorless oil. IR (neat) 2931, 1708, 1683, 1471, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12(6 \mathrm{H}, \mathrm{s}), 0.98(9 \mathrm{H}, \mathrm{s}), 1.05(9 \mathrm{H}$, s), $1.00-1.20\left(4 \times \mathrm{CH}_{3}, 4 \times \mathrm{s}\right), 1.25(3 \mathrm{H}, \mathrm{s}), 1.20-1.30(1 \mathrm{H}, \mathrm{m})$, $1.35-1.50(2 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 2.10(2 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{d}$, $J=4.0 \mathrm{~Hz}), 3.58,3.62(2 \mathrm{H}, \mathrm{AB}, J=16.7 \mathrm{~Hz}), 3.68(2 \mathrm{H}, \mathrm{m}), 3.80$ $(2 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}, \mathrm{dd}, J=10.6,3.3 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.40$ $(6 \mathrm{H}, \mathrm{m}), 7.64(4 \mathrm{H}, \mathrm{m}) ; \operatorname{EIMS}(m / z) 664\left(\mathrm{M}^{+}+1-{ }^{\mathrm{t}} \mathrm{Bu}\right), 606$ $\left(\mathrm{M}^{+}-2^{\mathrm{t}} \mathrm{Bu}\right)$.

Acknowledgements

We thank Dr Sun Jie, SIOC, for the X-ray crystallographic analysis.

References

1 M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggen and A. T. McPhail, J. Am. Chem. Soc., 1971, 93, 2325.

2 (a) A. N. Boa, P. R. Jenkins and N. J. Lawerence, Contemp. Org. Synth., 1994, 1, 47; (b) K. C. Nicolaou, W. M. Dai and R. K. Guy, Angew. Chem., Int. Ed. Engl., 1994, 33, 15.
3 (a) K. C. Nicolaou, Z. Yang, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Clairborne, J. Renaud, E. A. Couladouros, K. Paulvannan and E. J. Sorensen, Nature, 1994, 367, 630; (b) R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, H. Nadizadeh, Y. Suzuki, Ch. L. Tao, Phong Vu, S. H. Tang, P. Sh. Zhang, K. K. Murthi, L. N. Gentile and J. H. Liu, J. Am. Chem. Soc., 1994, 116, 1597; (c) J. J. Masters, J. T. Link, L. B. Synder, W. B. Young and S. J. Danishefsky, Angew. Chem., Int. Ed. Engl., 1995, 34, 1723; (d) P. A. Wender, N. F. Badham, S. P. Conway, P. E. Floreancig, T. E. Glass, J. B. Houze, N. E. Krauss, D. Lee, D. G. Marquess, P. L. McGrane, M. Wei, M. G. Natchus, A. J. Shuker, J. C. Sutton and R. E. Taylor, J. Am. Chem. Soc., 1997, 119, 2757; (e) I. Shiina, K. Saitoh, I. Fréchard-Ortuno and T. Mukaiyama, Chem. Lett. 1998, 1, 3; T. Mukaiyama, I. Shiina, H. Iwadare, H. Sakoh, Y. Tani, M. Hasegawa and K. Saitoh, Proc. Jpn. Acad., Ser. B, 1997, 73, 95; (f) K. Morihira, R. Hara, S. Kawahara, T. Nishimori, N. Nakamura, H. Kusama and I. Kuwajima, J. Am. Chem. Soc., 1998, 120, 12980.
4 (a) S. A. Hitchcock, S. J. Houldsworth, G. Pattenden, D. C. Pryde, N. M. Thomson and A. J. Blake, J. Chem. Soc., Perkin Trans. 1, 1998, 3181; (b) S. Arseniyadis, M. R. R. Ferreira, J. Q. Moral, J. I. M. Hernando and P. Potier, Tetrahedron Lett., 1998, 39, 7291; (c) C. Cavé, I. Valancogne, R. Casas and J. d'Angelo, Tetrahedron Lett., 1998, 39, 3133; (d) J. Wennerberg, M. Polla and T. Frejd, J. Org. Chem., 1997, 62, 8735; (e) L. A. Paquette and M. Zh. Zhao, J. Am. Chem. Soc., 1998, 120, 5203; (f) G. Stork, K. Manabe and L. B. Liu, J. Am. Chem. Soc., 1998, 120, 1337; (g) M. Nacada, E. Kojima and Y. Iwata, Tetrahedron Lett., 1998, 39, 313.

5 W. Cocker, T. B. H. McMurry and D. M. Sainsbury, J. Chem. Soc. (C), 1966, 1152.

6 S. Veibel and C. Pederson, Acta Chem. Scand., 1955, 9, 1674.
7 (a) J. D. White, B. G. Sheldon, B. A. Solheim and J. Clardy, Tetrahedron Lett., 1978, 19, 5189; (b) J. D. White, B. G. Sheldon, J. Org. Chem., 1981, 46, 2273.

8 Crystal data for 8: $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{10} \mathrm{Br}_{2}, \mathrm{M}=614.28$, triclinic, $P 1(\# 2)$, $a=8.614(2), b=17.667(5), c=8.446(3), a=97.02(3), \beta=91.42(2)$, $\gamma=79.31(2)^{\circ}, V=1253.7(7) \AA^{3}, T=293 \mathrm{~K}, Z=2, D_{\mathrm{c}}=1.627 \mathrm{~g} \mathrm{~cm}^{-3}$, $F_{000}=624.00, \mu(\mathrm{Mo}-\mathrm{K} \alpha)=32.95 \mathrm{~cm}^{-1}, 3942$ reflections measured, 3622 unique ($R_{\mathrm{int}}=0.040$), final $R=0.051, R_{\mathrm{w}}=0.072$, A colorless prism of dimensions $0.20 \times 0.20 \times 0.30 \mathrm{~mm}$ was used. CCDC reference number 207/370. See http://www.rsc.org/suppdata/pl/ 1999/3531 for crystallographic files in .cif format.
9 C.-Q. Wei, X.-R Jiang and Y. Ding, Tetrahedron, 1998, 54, 12623.
10 T. Mukaiyama, Org. Reac., 1982, 28, 238.
11 Several synthetic trials launched from compound $\mathbf{1 5}$ have failed. In the end, we changed the benzoyl ester in compound 15 to the benzyl ether in compound 18. Compound $\mathbf{1 8}$ was prepared from compound 14 through a successive deprotection (Bz), protection (Bn) and aldehyde deprotection procedure.
12 The adducts were obtained as a $9: 1$ mixture of two diastereomers, the major was assigned to be the structure indicated as 19.
13 (a) J. Tsuji, H. Nagashima and H. Nemoto, Org. Synth., 1984, 62, 9; (b) J. Tsuji, Synthesis, 1984, 369.

14 (a) H. Pellissier, P.-Y. Michellys and M. Santelli, Tetrahedron, 1997, 53, 7577; 10733; (b) O. G. Miller and D. O. M. Wayner, J. Org. Chem., 1990, 55, 2924; (c) A. B. Smith III, Y. S. Cho and G. K. Friestad, Tetrahedron Lett., 1998, 39, 8765.
15 A. Alexakis, M. J. Chapdelaine, G. H. Posner and A. W. Runquist, Tetrahedron Lett., 1978, 4205.
16 (a) G. S. Cockerill and P. Kocienski, J. Chem. Soc., Chem. Commun., 1983, 705; (b) G. S. Cockerill, P. Kocienski and R. Treadgold, J. Chem. Soc., Perkin Trans. 1, 1985, 2093; 2101.

17 A. B. Smith III, M. A. Guaciaro, S. R. Schow, P. M. Wovkulich, B. H. Toder and T. W. Hall, J. Am. Chem. Soc., 1981, 103, 219.

18 Compound 27 was determined to be a 6.6:1.0 mixture of two epimers from the HPLC analysis. This was verified by further oxidation of both epimers to the same 1,3-dicarbonyl product.

Paper 9/04382I

